\HHT example; V= R x R h\\B#aaddcc \fvs3 \b Functionals from R x R --> R \ \_\_ In the case V = R\]2 \ , each couple of numbers (c,d) from in R is a vector. Let us choose two basis vectors in V; for example e\[1 \ = (1,0) and e\[2 \ = (2,2). For every vector v = a\[1 \ e\[1 \ + a\[2 \ e\[2 \\_\_ \vac f(v) = a\[1 \ f( e\[1 \ ) + a\[2 \ f( e\[2 \ ) \-\-\- (*2) \_\_ v\ It may be worth to see how this functionals look in "coordinate space". Let us to fix basis { e\[1 \ , e\[2 \ ) temporarily and consider "coordinate space" of couples (x,y) where x,y are coodinates in this basis. Let us use notation x=a\[1 \ and y=a\[2 \ for coodinates a and b\[1 \ and b\[2 \ for parameters b\[1 \ = f( e\[1 \ ) and b\[2 \ = f( e\[2 \ ) and display graph of function f(x,y) = b\[1 \ x + b\[2 \ y in following applet. \_\_ For example in applet, coefficient b\[1 \ is chosen constant and coefficient b\[2 \ varies.\_ Function f which is displayed red looks like a plain in space R\]3 \ . \vac \_\_ <applet codebase="viewer" code=linear_viewer.class width=600 height=600 VSPACE="0" HSPACE="0" ALIGN = center> <!width, height should fit PARAM imageSize_x, imageSize_y> <param name="b1" value=30> <! in percent units; functional f(x,y) slopes > <param name="b2" value=80> <param name="b1Step" value=200> <! in percent units; functionals slope steps in respect to frame/time number > <param name="b2Step" value=0> <PARAM name="fps" value="10"> <PARAM name="FrameRingScale" value="1"> <!FrameRingScale - graph shifts per frame; 0 - stops rotation > <PARAM name="Xmin" value="0"> <!zeros taken here will restrict graph to a first quadrant > <PARAM name="Xmax" value="600"> <PARAM name="Ymin" value="0"> <PARAM name="Ymax" value="600"> <PARAM name="Zmin" value="-270"> <!valid only for z-axis yet> <PARAM name="Zmax" value="270"> <PARAM name="Xstep" value="10"> <PARAM name="Ystep" value="10"> <!because first plain will be heavily covered by others; give it smallest step > <PARAM name="imageSize_x" value="600"> <PARAM name="imageSize_y" value="600"> <!delete this:> <PARAM name="web" value="survey.asp?tools=web.htm"> <PARAM name="ftp" value="survey.asp?tools=ftp.htm"> <PARAM name="browsers" value="survey.asp?tools=browsers.htm"> </applet> v\\_\_ Actually, graph of every function (*2) will be a "plain" in R\]3 \ . This can be proved different ways. For example, if one will write equation (*2) in form \_\_ \vac b\[1 \ x + b\[2 \ y - f(x,y) = 0 \-\- or \_\_ uw = 0 \_\_ v\ where w is vector ( b\[1 \ , b\[2 \ , -1 ), and uw denotes a scalar product, then \_ solution of this equations will be a set of vecors u = (x,y,f(x,y)) perpendicular vector w. All perpendicular vectors lie in one plain in R\]3 \ . \_\_ According our general text, functionals f can be viewed as linear combinations of projection functionals. \_\_ \vac f = b\[1 \ P\[1 \ + b\[2 \ P\[2 \ \_\_ v\ In "coordinate space", "plain" P\[1 \ contains axis y and divides angle zOx in two equal parts. "Plain" P\[2 \ contains axis x and divides angle zOy equally. They look "like" "blue" and "green" plaines in above applet correspondingly. h\