\\short-ml escaper=\ escapee=. indent= \\end of header \HH \T Real Numbers t\ \^style \^greek h\\B <pre> \bReal Numbers \ \bDefinition 1. Cauchy relation \^ch. b\ For two sequences a\[n \ and b\[n \ , a\^chb : \^.fa\^ep \^.exn \^.fan',n'', n'>n, n''>n |a\[n' \ - b\[n'' \ | < \^ep. \bNotation.b\ \^.exm P(m',m'') will denote \^.exm \^.fam',m'', m'>m, m''>m P(m',m'') like in above definition. If context is clear, "\^.exm" can be also omitted. \bDefinition 2. a is Chauchy sequence iff b\ a\^cha. There are equivalent definitions and properties of Cauchy sequences: 1. a\^chb => a and b are Cauchy sequences. \bDefinition 1'.b\ a\^chb : sequence a\[1 \ b\[1 \ a\[2 \ b\[2 \ .... is Cauchy. 2. An arbitrary change of order in sequences a and b or taking subsequences of a and b does not change Cauchy relation between a and b. </pre> h\